# Two new *ent*-kaurane diterpenoids from *Isodon macrophyllus* Ji Xia Zhang<sup>a</sup>\*, Zheng Yue Chen<sup>a</sup>, Yong Xue Wang<sup>a</sup>, Pei Yong Qiu<sup>a</sup>, Sheng Xiong Huang<sup>b</sup>, Han Dong Sun<sup>b</sup>

<sup>a</sup>Pharmaceutical Laboratory, Xinxiang Medical College, Xinxiang, Henan Province 453003

<sup>b</sup>State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204

Two new *ent*-kaurane diterpenoids, dayecrystals A (1) and B (2), together with six known relatives, were isolated from the leaves of *Isodon macrophyllus*. Their structures were determined by spectroscopic means.

Keywords: Isodon macrophyllus, ent-kaurane, diterpene, dayecrystals A and B

Plants belonging to the genus *Isodon*, are known to be a rich source of *ent*-kaurane diterpenoids, most of which have been shown to have antitumor and anti-inflammatory activities.<sup>1</sup> A reinvestigation of the constituents of *I. macrophyllus* (Migo) H. Hara<sup>2,3</sup> collected in Tongbai prefecture of Henan province of China, resulted in the isolation of two new diterpenoids, dayecrystals A (1) and B (2), together with six known diterpenoids, epinodosin (3),<sup>4,5</sup> isodonoiol (4),<sup>6</sup> lasiodonin (5),<sup>7,8</sup> oridonin (6),<sup>9,10</sup> lasiodin (7)<sup>11</sup> and rabdophyllin H (8).<sup>2</sup> This paper describes the isolation and structural elucidation of the two new diterpenoids by spectroscopic methods. (Fig. 1).

Compound **1** was obtained from methanol MeOH as colourless needles,  $[\alpha]_D^{19} - 42.0$  (*c* 1.16, MeOH). Its molecular formula,  $C_{20}H_{32}O_3$ , was deduced from HRESIMS (found 343.2248, calcd for  $[M + Na]^+$  343.2249), suggesting five degrees of unsaturation. Its NMR data in combination with the IR spectrum revealed the presence of an aldehyde group [IR: 2765, 1709 cm<sup>-1</sup>,  $\delta_H 10.30$  (1H, s),  $\delta_C 207.7$ ], three methyl carbons [ $\delta_H$  1.25, 0.61 and 0.44 (each 3H, s);  $\delta_C 24.2$ , 32.3, and 21.2], eight methylenes [ $\delta_C 18.0$ , 18.0, 20.0, 25.9, 33.8, 35.4, 42.1, and 56.0], four methines including one which was oxygenated ( $\delta_C 54.7$ , 55.7, 59.9, and 81.2), and four quaternary carbons including one oxygenated carbon ( $\delta_C 34.0$ , 51.4, 54.8, and 80.1). The resonances at  $\delta_H 6.20$  (1H, br d, J = 6.4 Hz) and 5.85 (1H, br s) in the <sup>1</sup>H NMR spectrum and the absorption

at 3387 cm<sup>-1</sup> in the IR spectrum suggested the existence of two hydroxyl groups. Considering the structural types of diterpenoids isolated from the genus Isodon, compound 1 was assigned tentatively as an ent-kaurane diterpenoid with two hydroxyl and an aldehyde group. The downfield chemical shift of C-10 ( $\delta_{\rm C}$  54.8) and the normal shift of C-4 ( $\delta_{\rm C}$  34.0) suggested that the aldehyde carbon might be located at C-20, which was confirmed by the HMBC correlations of H-20 with C-1 and C-5 (Fig. 2). The clear HMBC correlations of H-14 with C-8, C-9, C-15, and C-16 suggested the presence of a hydroxyl group at C-14. The existence of a hydroxyl group at C-16 was established by the cross-peaks of H<sub>2</sub>-12, H-15 and H<sub>3</sub>-17 with C-16 in the HMBC spectrum. The relative configuration of 1 was established by the NOESY spectrum. The proton of H-14 showing NOESY correlations with H-12 $\alpha$ , H-13, and H-20 which suggested a  $\beta$  orientation for the hydroxyl group at C-14. The  $\beta$ -orientation of the hydroxyl group at C-16 was suggested by the clear cross-peaks of  $H_3$ -17 with H-13 and H-14 $\alpha$  in NOESY spectrum as shown in Fig. 2. Hence, 1 was elucidated as 14β,16β-dihydroxy-20-alent-kaurane, and named dayecrystal A.

Compound **2** was obtained from methanol MeOH as colourless needles,  $[\alpha]_{D}^{19} - 31.0$  (*c* 2.52, MeOH) and had a molecular formula of C<sub>21</sub>H<sub>32</sub>O<sub>7</sub> which was deduced from HRESIMS (found 419.2041, calcd for  $[M + Na]^+$ , 419.2046).



Fig. 1 Molecular structures of compounds 1–8.

<sup>\*</sup> Correspondent. E-mail: zjx@xxmc.edu.cn



Fig. 2 Key HMBC (left) and NOESY (right) correlations of 1.

Comparison of the spectroscopic data of **2** with those of rubescensin G<sup>3</sup> showed similarities except that a hydroxyl group at C-17 in rubescensin G was replaced by a methoxyl group ( $\delta_C$  57.6, q) in **2**. This was confirmed by the downfield chemical shift of C-17 from  $\delta_C$  63.4 in rubescensin G to  $\delta_C$  74.6 in **2**. Examination of its 2D NMR data (Fig. 3) showed that **2** was 16(*R*)-1 $\alpha$ , $6\beta$ , $7\beta$ ,14 $\beta$ -tetrahydroxy-17-methoxy- $7\alpha$ ,20-epoxy-*ent*-kaur-15-one. It was named dayecrystal B.

## Experimental

Melting points were determined with a Kofler melting point apparatus and uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. UV spectra were recorded on a Shimadzu UV-2550 instrument. IR spectra were taken on a Nicolet 170SX FT-IR spectrometer. <sup>1</sup>H, <sup>13</sup>C and 2D NMR spectra were recorded on a Bruker AM-400 NMR spectrometer with TMS as internal standard. HR-ESI-MS was obtained on a Waters HPLCQ-Tof HR-MS spectrometer.

# Extraction and isolation procedure

The dried and crushed leaves of *Isodon macrophyllus* (10.0 kg) were extracted three times with Me<sub>2</sub>CO/H<sub>2</sub>O (7: 3 v/v) at room temperature for 3 days. The extract was filtered and the solvent was removed under reduced pressure. The residue was partitioned between H<sub>2</sub>O and AcOEt. The AcOEt fraction gave 360 g of residue after removing the solvent. This residue was separated by silica gel (200–300 mesh) column chromatography with gradient elution of CHCl<sub>3</sub>/MeOH (1: 0 to 0: 1) to give seven fractions which were subject to repeated chromatography (silica gel, gradient elution with CHCl<sub>3</sub>/Me<sub>2</sub>CO), giving pure compounds: dayecrystal A (1, 10 mg), dayecrystal B (2, 16 mg), epinodosin (3, 43 mg), isodonoiol (4, 28 mg), lasiodonin (5, 30 mg), oridonin (6, 8 g), lasiodin (7, 76 mg) and rabdophilin H (8, 8 mg). Compounds 3–8 were identified by comparing their



### Fig. 3 Key HMBC correlations of 2.

m.p., IR, MS,  $^{1}\mathrm{H}$  and  $^{13}\mathrm{C}$  NMR chemical shifts with those reported in the literature.^2,4-11

*Dayecrystal A* (1): Colourless needles, m.p.173–175°C,  $[\alpha]_{20}^{20}$ –42° (*c* 1.16, MeOH), UV λ<sub>max</sub> (MeOH) 261 nm (loge, 4.52); IR (KBr) v<sub>max</sub>/cm<sup>-1</sup>: 3387, 3217, 2927, 2869, 2765, 1709, 1447, 1066, 1050, 1024, 977, 937, 876. HR-ESI-MS: Found: 343.2248, Calcd. for C<sub>20</sub>H<sub>32</sub>O<sub>3</sub> + Na: 343.2249. For <sup>1</sup>H and <sup>13</sup>C NMR data see Table 1.

Dayecrystal B (2): Colourless needles, m.p.176–178°C,  $[\alpha]_{20}^{20}$ –31° (c 2.52, MeOH), IR(KBr)  $\nu_{max}$ /cm<sup>-1</sup>: 3231, 2935, 2867, 2833, 1713, 1456, 1253, 1181, 1060. HR-ESI-MS: Found: 419.2041, Calcd. for C<sub>21</sub>H<sub>32</sub>O<sub>7</sub> + Na: 419.2046. For <sup>1</sup>H and <sup>13</sup>C NMR data see Table 1.

Received 31 December 2005; accepted 30 January 2006 Paper 05/3726

#### References

- 1 H.D. Sun, Y.L. Xu and B. Jiang, *Diterpenoids from Isodon Species*, Science Press, Beijing, 2001, pp. 2-3.
- Science Press, Beijing, 2001, pp. 2-3.
  X.R. Wng, H.P. Wang, H.P. Hu, H.D. Sun, S.Q. Wang, S. Ueda, Y. Kuroda and T. Fujita, *Phytochemistry*, 1995, **38**, 921.
- 3 Q.B. Han, S.X. Mei, B. Jiang, A.H. Zhao and H.D. Sun, Chin. J. Org. Chem., 2003, 23, 270.
- E. Fujita, T. Fujita, M. Taoka, H. Katayama and M. Shibuya, *Chem. Pharm. Bull.*, 1973, 21, 1357.
- 5 I. Kubo, T. Kamikawa and T. Kubota, Tetrahedron, 1974, 30, 615.
- 6 Q.Z. Zhao, J.H. Chao, H.Q. Wang and H.D. Sun, *Chin. Tradit. Herbal Drugs*, 1984, 15, 49.
- 7 Y. Takeda, T. Fujita and C.C. Chen, Chem. Letts., 1982, 833
- 8 E. Fujita and M. Taoka, Chem. Pharm. Bull., 1972, 20,1752
- 9 E. Fujita, T..Fujita and M..Shibuya, Tetrahedron Lett., 1977, 3153.
- 10 E. Fujita, T. Fujita, H. Katayama, M. Shibuya and T. Shingu, *J Chem. Soc.* (C), 1970, 1674.
- 11 Q.B. Han, J.X. Zhang, Y.H. Shen and H.D. Sun, *Chin. J. Na. Med.*, 2003, 1, 16.

Table 1 $^{1}$ H and  $^{13}$ C NMR data of compounds 1, 2 and rubescensin G (C5D5N,  $\delta$  ppm)

|      | δ <sub>c</sub> |         |               | δ <sub>H</sub> ( <i>J</i> /Hz) |                            |
|------|----------------|---------|---------------|--------------------------------|----------------------------|
| No   | 1              | 2       | rubescensin G | 1                              | 2                          |
| 1    | 35.4 t         | 75.3 d  | 75.3 d        | 2.48 (m, H-α)<br>0.38 (m, H-β) | 3.43 (m)                   |
| 2    | 18.0 t         | 30.4 t  | 31.2 t        | 1.58 (m), 1.28 (overlap)       | 1.37-1.45 (2H, overlap)    |
| 3    | 42.1 t         | 39.1 t  | 39.4 t        | 1.07 (m), 0.89 (m)             | 1.18-1.21 (2H, overlap)    |
| 4    | 34.0 s         | 33.6 s  | 33.9 s        |                                | •                          |
| 5    | 55.7 d         | 59.7 d  | 60.7 d        | 0.94 (dd, 15.4, 2.4)           | 1.25 (d, 7.6)              |
| 6    | 20.0 t         | 72.9 d  | 73.2 d        | 1.44 (m), 1.17 (m)             | 4.05 (dd, 10.4, 7.6)       |
| 7    | 25.9 t         | 97.9 s  | 98.1 s        | 1.28–1.32 (2H, overlap)        |                            |
| 8    | 51.4 s         | 63.3 s  | 61.4 s        | •                              |                            |
| 9    | 59.9 d         | 53.0 d  | 53.5 d        | 1.29 (overlap)                 | 1.75 (m, H-9)              |
| 10   | 54.8 s         | 41.3 s  | 41.6 s        |                                |                            |
| 11   | 20.0 t         | 19.9 t  | 20.2 t        | 1.71 (m, H-α)                  | 2.18 (overlap, H-α)        |
|      |                |         |               | 1.15 (m, H-β)                  | 1.86 (m, H-β)              |
| 12   | 33.8 t         | 30.2 t  | 30.5 t        | 2.57 (m, H-α)                  | 2.20 (overlap, H-α)        |
|      |                |         |               | 1.04 (m, H-β)                  | <b>1.64</b> (overlap, H-β) |
| 13   | 54.7 d         | 38.9 d  | 38.9 d        | 2.04 (br s)                    | 2.53 (br d, 8.0)           |
| 14   | 81.2 d         | 74.6 d  | 74.8 d        | 3.77 (br d, 6.4)               | 5.05 (br s,)               |
| 15   | 56.0 t         | 221.9 s | 222.2 s       | 1.53 (d, 14.4, H-α)            |                            |
|      |                |         |               | 1.98 (d, 14.4, H-β)            |                            |
| 16   | 80.1 s         | 57.9 d  | 60.0 d        |                                | 2.67 (m)                   |
| 17   | 24.2 q         | 74.6 t  | 63.4 t        | 1.25 (s)                       | 3.74 (2H, d, 7.2)          |
| 18   | 32.3 q         | 33.2 q  | 33.4 q        | 0.61 (s)                       | 1.09 (3H, s)               |
| 19   | 21.2 q         | 22.0 q  | 22.3 q        | 0.44 (s)                       | 0.92 (3H, s)               |
| 20   | 207.7 d        | 63.5 t  | 63.7 t        | 10.30 (s)                      | 4.56 and 4.11 (2d, 10.0)   |
| OCH₃ |                | 57.6 q  |               |                                | 3.05 (3H, s)               |

<sup>13</sup>C NMR multiplicities were established by DEPT spectrum.